

Process Development of Fission Mo in Korea

Y.R. Uhm, H.J. Ryu, Jun S. Lee, S.J. Choi

Korea Atomic Energy Research Institute

Overview

- Background
- Kijang NRR
- FM Activities and Highlights
- Current Research Activities
- Target Development
- Process Development
- Future Prospects
- Summary

Strategic Plan Established in 2008

Shortage of Tc-99m

Background

Insecurity of Mo-99 Supply in Korea

- → Major issue
 - Self-sufficiency of RI demand became an issue for health care
 - Require to secure the medical welfare

New Research Reactor Project

- Launched in 2012
- Phase: Conceptual and Basic Design
- Aiming for 1st Criticality: 2017
- Fission Mo Production Capacity: 2,000Ci/w
- NTD, Ir-192, I-125, Lu-177 etc.

Ki-Jang New RR

Item	Value	
Reactor power(MW)	~15	
Reactor type	Pool type	
Max. thermal neutron flux (n/cm²s)	> 3.0x10 ¹⁴ n/cm ² s	
Operation day per year	~300	
Reactor life(year)	50	
Fuel	LEU U-Mo plate type (U loading: ~8.0 g/cc)	
Reflector	Beryllium	
Coolant and flow direction in operation	H ₂ O, downward forced convection	
Reactor building	Confinement	
Decay heat cooling	Passive system	

Conceptual Design of Core

Mo-99 Production (8 days)

- ▶ 1 RIG >400 Ci
- 4 RIGS > 1,600 Ci
- ► 6 RIGS > 2,400 Ci

w/ 85% Chemical Yield > 2,000Ci (8day)

OPL Mechanism for FM Irr. Holes

FM Research Activities

→ 1st Feasibility Study (1987 ~ 2001)

- 'HANARO' RR Project
- Feasibility Study Using HEU
- → A Hot Cell Bank was Reserved for FM Production -> Currently Tc-99m Generator Production Bank
- Researchers: Retired

$ightharpoonup 2^{nd}$ Study (2001 \sim 2006)

- → HEU → LEU
- LEU Foil Target (IAEA/RERTR)
- Target Oriented
- Feasibility Study on MIP (50kW Solution Reactor for FM, I-131 and Sr-89)

→ 3rd Activity (2012 ~)

- 'New Research Reactor' Project
- UAIx (LEU) Target + Process + Facility (2,000Ci FM)
- Process development : Still beginning stage
- No Specialist Available

Highlights from Former Activity

U foil fabrication by Roll Casting for Mass Production

Uranium Foil Fabrication System

Crucible and a rotating Cu roller

Uranium Foil for Y12 in 2013

- NU 84 g (Germany Origin)
- LEU 99 g (19.75%, US Origin)
- Each 8 Samples

Process Development Plan

Current Research Activity

- Target
 - 3g U/cc with Atomized UAlx + Al
 - ≥6gU/cc with Atomized U + Al
 - Expectation: 40 ~ 50Ci/target (UAlx)
 - 8 Targets/Rig
 - 6 Rigs/Batch of Irradiation
- Production Process
 - Base Dissolution
 - Alumina Adsorption/Purification
 (Column but Batch also Under Consideration)
 - I-131 Recovery for Drug Manufacturing
 - I-131 and Xe-133 RemovalConsidered as the Most Sensitive Issue

UAIx Powder Production by Atomization Technology

U + Al Melting -> Casting -> Heat Treatment -> Crushing

Atomization (Centrifugal Spraying)

Composition	Temp. Conditions	Results
U-1wt%Al	Solid in Al Solution Melting at 1,130°C	- Grain refinement : ~ 1 um
U-10wt%Al	Melting at 1,550°C	 - 27 vol.% U + 73 vol.% UAl₂ - Density: 11.1 g/cc - Uranium density: 9.95 g/cc
U-20wt%Al	Melting at 1,600°C	 76 vol.% UAl₂ + 24 vol.% UAl₃ Density: 7.8 g/cc Uranium density: 6.26 g/cc

Atomized UAIx Powder

Target Preparation

Pelletized

9g_U/cc Target Preparation

Atomized U Powder + Al + Heat Treatment

UAl_x phase was formed by annealing of uranium dispersion samples: @700°C for 1hour.

Dissolved in Alkali? Yes

Conceptual FM Production Process

Process Development

Dissolution of Aluminum (Al 6061)

Dissolution Experiment (Only AI)

Max.83°C

Max.83°C

Al sheet 1 EA

Time(min.)

Rag for Al Plate Dissolution

Aiming to determine

- Dissolution Conditions
- Particle Size Distribution

Gaseous Iodine Trap

- → Release of Radioactive Iodine to the Environments is One of the Greatest Concerns.
- Approximately 1,800Ci/Target of Fission Iodine is expected at the Processing Time.
- → Various Trapping Materials are Under Considered.

 <u>Cu powder</u> and <u>Pt on Cu</u> are Most Probable

 Trapping Materials for the Recovery of I-131.

Gaseous I₂ Removal and Analysis

Gaseous I₂ Recovery from CuI

Summary

- More than 20 years of FM Process Development has no Real Outputs.
- Domestic and International Environments Pushed to Construct NRR and FM Facility
 - Aiming 2,000Ci of FM
- Notable Progress in Target has been Made.
- Still Struggling in the Fundamentals of FM Process
- FM Facility Design is Time-Taking
 - But, Most Concerns are on Iodine and Xenon Release
- Expected some breakthroughs in this year in both FM Process and Facility Design.
- → International Technical Supports or Consulting Specially on Facility Design are Greatly Necessary for Us to Succeed in FM Production in Korea and also in the Region.

Acknowledgements

- Funded by Ministry of Educations, Science and Technology, Korea

THANK YOU